
 

  
Abstract –– This paper deals with the analysis of a closed-

loop identification technique applied to a DC servomechanism 
from a passivity point of view. It is shown that the closed-loop 
system together with the identification algorithm can be 
divided into simpler subsystems easier to analyze and then, 
many properties related to passivity and stability can be 
deduced. Furthermore, it is shown that with this separation 
approach we have the freedom to select many controller 
structures, which could let to improve the performance of the 
identification algorithm, even in presence of perturbation 
signals.  

 
Keywords –– Closed-loop identification, passivity, 

persistent excitation 
 
 

I.  INTRODUCTION 
 
     System identification is an important tool which let us 
obtain important information that can be used to improve the 
performance of a system. There are several techniques and 
classifications in the literature to perform parameter 
identification. One possible classification for parameter 
identification is open-loop and closed-loop based 
techniques. In the first case, simplicity is an important 
feature which makes it attractive, unfortunately, such a 
techniques require the system to be open-loop stable and 
cannot be applied to unstable systems. Works in this vein 
are those based on the step response, the Least Squares (LS) 
method and the gradient method, as shown in references [6], 
[7]. However, there exist many situations where performing 
open-loop identification is dangerous or impossible. For 
example, when security is compromised and when it is 
impossible to remove the system controller, open-loop 
identification of the system parameters is not an alternative. 
Some examples are those which involve DC 
servomechanisms controlled in position mode, where there 
exists a pole at the origin, making the system marginally 
stable. Other examples are robotics systems, which 
possesses a controller and if it is removed, guaranty will 
cease. In such cases, closed-loop identification leads to a 
reasonable alternative because closing the loop allows 
perform system identification in safety conditions. Other 
classification is proposed in [6], considering direct and 
indirect methods for closed-loop system identification, 
where indirect methods consider the controller structure for 
identification purposes and will be considered in this work.  
 

    Another important feature to be considered in system 
identification is the Spectral Richness (SR) of the excitation 
signal used for the identification experiments or the so 
called Persistent Excitation (PE) condition [4]. It is well 
known that, for linear systems, if the regressor vector fulfills 
the PE condition, this ensures that the parameter error will 
converge to zero, then, in the identification framework it is 
very important to analyze under which conditions such a 
condition will be fulfilled. 
 
    On the other hand, the passivity theory gives a framework 
for the design and analysis of control systems using an 
input-output description based on energy-related 
considerations and can be used in many areas of science 
which yields to a modular approach to control systems 
design and analysis. When modeling passive systems, it may 
be useful to develop the state-space or input-output models 
so that they reflect the passivity properties of the system, 
and thereby ensure that the passivity of the model is 
invariant with respect to model parameters, and to the 
mathematical representation used in the model. 
 
    In this work the analysis of a closed-loop identification 
algorithm applied to a DC servomechanism is performed. 
The passivity approach is used to divide the whole system 
into three subsystems which are simpler to analyze and 
deduce its properties related to passivity, stability and 
parameter convergence. The objective is to show that with 
this separation, it is possible to have the freedom to select a 
class of linear or nonlinear controller, with some desired 
properties, and then obtain an identification algorithm with a 
good performance, i.e., a robust identification algorithm 
even in the presence of disturbances. Section II gives some 
preliminary results related with passivity theory. In Section 
III the system description, related with a DC 
servomechanism is presented. Section IV presents the 
passivity and stability analysis, considering as special cases 
the PD and PID controller. Finally, some concluding 
remarks are given in Section V. 
 
 

II. PRELIMINARY RESULTS 

 
 The main objective of this paper is to analyze a 
methodology for closed-loop identification of a DC 
servomechanism from a passivity viewpoint. In order to 
clarify the results and analysis that will be developed, the 
next definitions and results are important. These results were 
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mainly taken from references [1], [2] and [3]. For some 
results the Fig. 01 will be considered, the system Σa and the 
general nonlinear system Σ will also be considered and are 
defined as follows: 
 

௔ߑ  ൜
ሶݔ ൌ ݂ሺݔሻ ൅ ݃ሺݔሻݑ, ሺ0ሻݔ ൌ ଴ݔ ∈ Թ

ݕ ൌ ݄ሺݔሻ
 (1) 

ߑ  ൜
ሶݔ ൌ ݂ሺݔ, ,ሻݑ ሺ0ሻݔ ൌ ଴ݔ ∈ Թ

ݕ ൌ ݄ሺݔ, ሻݑ
 (2) 

 
Definition 1. ([3]) The system (2) is dissipative with respect 
to the supply rate ω(u,y):Թm×	Թm →Թ if and only if there 
exist a storage function H:	Թn →Թ≥0 such that ܪ൫ݔሺܶሻ൯ ൑

ሺ0ሻ൯ݔ൫ܪ ൅ ׬ ߱ሺݑሺݐሻ, ሻሻݐሺݕ
்
଴  for all u, all T≥0 and all ݐ݀

x₀∈Թn. 
 
Definition 2. ([3]) The system (2) is passive if it is 
dissipative with supply rate ω(u,y)=uTy. It is Input Strictly 
Passive (ISP) if it is dissipative with supply rate ω(u,y)=uTy-
δi||ui||², where δi >0. Finally, it is Output Strictly Passive 
(OSP) if it is dissipative with supply rate ω(u,y)=uTy-
δoǁ||y||², with δo >0. 
 
Definition 3. ([3]) Σ is said L₂-stable if there exists a 
positive constant γ such that for every initial condition x₀, 
there exists a finite constant β(x₀) such that ‖ݕ‖ଶ் ൑
ଶ்‖ݑ‖ ൅  .଴ሻݔሺߚ
 
Definition 4. A state space system ݔሶ ൌf(x), x∈Թn is zero 
state observable (ZSO) from the output y=h(x), if for all 
initial conditions x(0)∈Թn  we have: y(t)≡0⇒x(t)≡0. It is 
zero state detectable (ZSD) if: y(t)≡0⇒limt→∞x(t)=0. 
 
Definition 5. ([4]) A vector ߶:Թା → Թଶ௡ is persistently 
exciting (PE) if there exists positive constants {α₁,α₂,δ} such 

that ߙଵܫ ൑ ׬ ߶ሺ߬ሻ߶்ሺ߬ሻ݀߬
௧బାఋ
௧బ

൑  .t₀≥0∀ ,ܫଶߙ

 
Definition 6. ([4]) A stationary signal r: Թ⁺→Թ is 
Sufficiently Rich (SR) or order k if the spectral density 
support of r has at least k points. 
 
Proposition 1. ([3]) If Σ:u→y is OSP, then it is L₂-stable. 
 
Proposition 2. ([3]) Consider the input-output system 
depicted in Fig. 01. If H₁ and H₂ are both passive, then the 
feedback interconnected system is also passive. If 
furthermore they are OSP, then the closed-loop system is 
also OSP. 
 

 
Figure 01. Closed-loop system with one external input 

Theorem 1. ([1]) Assume that both H₁ and H₂ (see Fig. 01) 

fulfills the conditions: ׬ ݐଵ݀ݑଵ்ݕ ൅ ଵߚ ൒ ଵߜ ׬ ݐଵ݀ݕଵ்ݕ
௧
଴ ൅

௧
଴

߳ଵ ׬ ݐଵ݀ݑଵ்ݑ
௧
଴  and ׬ ଶݕ

ݐଶ݀ݑ் ൅ ଶߚ ൒ ଶߜ ׬ ଶݕ
ݐଶ݀ݕ்

௧
଴ ൅

௧
଴

߳ଶ ׬ ଶݑ
ݐଶ݀ݑ்

௧
଴ , with ሺߜଵ ൅ ߳ଵሻ ൐ 0, ሺߜଶ ൅ ߳ଶሻ ൐ 0. The 

feedback closed-loop system is finite gain stable if δ₂≥0,    
߳ଵ ≥0, ߳ଶ ൅ ଵߜ ൐ 0, where ߳ଶ or δ₁ may be negative. 
 
Theorem 2. ([4]) Let ߶ሺݐሻ ∈ Թଶ௡ be the output of a Linear 
Time Invariant system with transfer function Hφr(s) and 
stationary input r(t). Assume that ܪథ௥ሺ݆߱ଵሻ, … ,  థ௥ሺ݆߱ଶ௡ሻܪ
are linearly independent in ԧ2n for all ω₁,...,ω2n∈Թ. Then, ߶ 
is PE if and only if r is SR or order 2n. 
 
Theorem 3. ([3]) Suppose the system Σa is OSP with 
positive semidefinite storage function H≥0. (a) If Σa is ZSO, 
then H(x)>0 for all x≠0. (b) If H(x)>0 for all x≠0, H(0)=0 
and Σa is ZSD, then x=0 is a locally asymptotically stable 
equilibrium of ݔሶ ൌ ݂ሺݔሻ. Furthermore, if H is radially 
unbounded, the stability is global. 
 
Corollary 1. ([1]) The feedback system in Fig. 01 is L₂-
finite gain stable if: (1) H₁ is passive and H₂ is ISP, i.e., 
߳₁≥0, ߳₂>0, δ₁≥0, δ₂≥0; (2) H₁ is OSP and H₂ is passive, 
i.e., ߳₁≥0, ߳₂≥0, δ₁>0, δ₂≥0. 
 
Lemma 1. ([3]) Let y=G(p)u, where G(p) is an n×m strictly 
proper, exponentially stable transfer function and p=d/dt. 
Then, ݑ ∈ ଶܮ

௡ implies that ݕ ∈ ଶܮ
௡ ∩ ஶ௡ܮ ሶݕ , ∈ ଶܮ

௡, y(t) is 
continuous and y→0 as t→∞. If, in addition, u→0 as t→∞, 
then ݕሶ  →0. 
 
 

III. SYSTEM DESCRIPTION 

 
     This paper considers the closed-loop parameter 

identification analysis of a DC servomechanism from a 
passivity point of view, where the servomechanism position 
will be considered as the output of the system. The 
methodology for closed-loop identification is the same than 
that presented in references [8], [9] and [10], where the idea 
of the identification algorithm is as follows: the real 
servomechanism is controlled using a Proportional 
Derivative (PD) or a Proportional Integral Derivative (PID) 
controller and it is considered a model of the real 
servomechanism whose feedback loop is closed using again 
a PD or a PID controller, where the same gains are 
employed in both controllers. Then, a gradient parameter 
identification algorithm is employed for estimating the 
system parameters and the estimated parameters update the 
model of the real servomechanism. We will consider the 
model of the DC servomechanism without any perturbation 
signal, so that its model can be given as: 

 
ሷݍ  ሺݐሻ ൌ െܽݍሶ ሺݐሻ ൅  ሻ (3)ݐሺݑܾ
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with q(t) being the position of the servomechanism, {a,b} 
are the system parameters (which are assumed to be 
constant) and u(t) is the control input. The analysis that will 
be presented will consist on separating the whole system 
into subsystems, analyze the passivity properties of each 
subsystem and then put them together, so that the first 
analysis can be used to deduce stability properties for the 
whole system. Besides, for closing the loop, a PD and a PID 
controller will be considered. 

     

 
Figure 02. Closed-loop identification algorithm 

 
 An important feature of this methodology is that 

stability of the closed-loop with the real servomechanism 
can be claimed without requiring the knowledge of the 
system parameters; for instance, it is easy to show that the 
system (3) with a PD controller leads to a polynomial which 
can be analyzed by using the Routh-Hurwitz criterion and 
then, conclude stability without regarding the value of the 
system parameters. The idea of the closed-loop 
identification algorithm is depicted in Fig. 02, where a 
model of the servomechanism with output qe(t) is considered 
and its dynamic equation is given by: 

 
ሻݐሷ௘ሺݍ  ൌ െොܽݍሶ௘ሺݐሻ ൅ ෠ܾݑ௘ሺݐሻ (4) 
 
where the parameters ൫ ොܽ, ෠ܾ൯ denote the estimates of (a,b). 
Let to define the output error ߳ሺݐሻ ൌ ݍ െ  ௘. Then, byݍ
taking the second time derivative of ߳ሺݐሻ and using (3) and 
(4) we get: 
 
 ߳ሷ ൅ ܽ߳ሶ ൌ ܾ߳௖ ൅  ෨்߶ (5)ߠ
 
where ߶ሺݐሻ ൌ ሺݍሶ௘, െݑ௘ሻ் is the so called regressor vector 

and ߠ෨ሺݐሻ ൌ ൫ ොܽ െ ܽ, ෠ܾ െ ܾ൯
்
ൌ ሻݐ෠ሺߠ െ  is the parameter ߠ

error vector, ߠ෠ሺݐሻ denote the estimated parameters vector, θ 
the real parameter vector and ߳௖ ൌ ሻݐሺݑ െ   .ሻݐ௘ሺݑ
 

IV. PASSIVITY ANALYSIS 

 
 In this section the system (5) will be split into three 
subsystems and some passivity properties will be inferred 
from each subsystem. To this end, let to consider the input 

ଵݑ ൌ ܾ߳௖ ൅  ෨்߶. Then, (5) can be seen as a system Σ₁ withߠ
input u₁ and output y₁ as in the next equation: 

 
:ଵߑ  ߳ሷ ൅ ܽ߳ሶ ൌ  ଵ (6)ݑ

 
    Now, the controller used for closing the loop of the 

system can be considered as another system with a specific 
dynamic equation. This viewpoint is important because we 
can analyze the controller as a second system which posses 
some passivity properties and then apply some useful 
results, mainly that stated in Proposition 2, which says that 
the negative feedback interconnection of two passive 
systems remains passive. Besides, another important result 
that can be drawn is that if we consider the real system and 
the controller as Euler Lagrange (EL) systems, then it is 
possible to interconnect them so that the resulting feedback 
system is an EL system, whose EL parameters are simply 
the sum of the EL parameters of each subsystem [3]. 
Therefore, let us consider a second subsystem Σ₂	with	state 
x₂(t) and a third subsystem Σ3	with	state	ݔଷ ൌ  ሻ, whereݐ෨ሺߠ
the general state-space description for the system Σi	can be 
given as follows: 

 

௜ߑ  ൜
ሶ௜ݔ ൌ ௜݂ሺݔ௜ሻ ൅ ݃௜ሺݔ௜ሻݑ௜
௜ݕ ൌ ݄௜ሺݔ௜ሻ ൅ ݆௜ሺݔ௜ሻݑ௜

, ݅ ൌ 2,3 (7) 

 
 Then, Σ₂	can be seen as a second subsystem with input 
u₂=y₁ and output ݕଶ ൌ െܾ߳௖ and, in order to perform the 
parameter identification, we can consider the system Σ3	with 
Input u₃, to be defined later, and output ݕଷ ൌ െߠ෨்߶. 
Therefore, by using the three subsystems presented above, it 
is possible to consider the whole system (5) as the negative 
feedback interconnection of these subsystems as depicted in 
Fig. 03. Now we have a specific form for each subsystem, it 
is possible to analyze them separately. To this end, let us 
consider first the subsystem (6) and the storage function H₁ 
as follows: ܪଵሺ߳, ߳ሶሻ ൌ

ఓ௔

ଶ
߳ଶ ൅

ଵ

ଶ
߳ሶଶ ൅  ሶ, which  is positive߳߳ߤ

definite if ߤ ൏ ܽ, where ߤ ∈ Թା. Then, by taking the time 
derivative of H₁ and considering (6) yields ܪሶଵ ൌ
߳߳ܽߤ ൅ ߳ሶ߳ሷ ൅ ሷ߳߳ߤ ൅ ሶଶሶ߳ߤ ൑ ߳ߤଵሺݑ ൅ ߳ሶሻ, if ߤ ൏ ܽ holds. 
Thus, the system Σ1 defines the passive mapping: u₁→y₁, 
with output ݕଵ ൌ ሺ߳ߤ ൅ ߳ሶሻ. At this point, it is useful to 
consider Corollary 1 and Lemma 1 because, from the 
structure of the output ݕଵሺݐሻ and using the Laplace 
transform with ߳ሺݏሻ ൌ ࣦሼ߳ሺݐሻሽ, ݕሺݏሻ ൌ ࣦሼݕሺݐሻሽ and ࣦ{⋅} 
the Laplace operator, it is easy to see that: ߳ሺݏሻ ൌ
ሺݏ ൅  ሻ corresponds to theݐሻ, which means that ߳ሺݏሺݕሻିଵߤ
output of an exponentially stable transfer function, then we 
can search for a feedback interconnection such that the 
resulting system will be L₂-finite gain stable (i.e., an ISP 
system according to Corollary 1), and then ߳ሺݐሻ

௧→ஶ
ሱۛ ሮ0 

follows. 
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Figure 03. Negative feedback interconnection of three subsystems 

 
 Therefore, one possibility is to consider a controller Σ₂ 
which posses the ISP property. Note that by setting y₁≡0, 
from (6) we get that ߳ ൌ 0, ߳ሶ ൌ 0, i.e., the system (6) is 
ZSO, and this property, together with the positive 
definiteness of  H1, can be used to conclude stability of this 
system, as mentioned in Theorem 3. Finally, in order to 
show explicitly the properties of passivity and convergence 
we will consider the special case of the PD and PID 
controllers as follows. 

 
A.  PD Controller Analysis 
 
 Let us consider the case of the PD controller u(t) for the 
real servomechanism and the controller ue(t) for the 
estimated model, described by: ݑሺݐሻ ൌ ݇௣݁ሺݐሻ െ
݇ௗݍሶ ሺݐሻ, ሻݐ௘ሺݑ ൌ ݇௣݁௘ሺݐሻ െ ݇ௗݍሶ௘ሺݐሻ, where ݁ሺݐሻ ൌ ௗݍ െ
,ݍ ݁௘ ൌ ௗݍ െ ,ݍ௘, with ሼݍ  ௘ሽ being the outputs from the realݍ
servomechanism and its model, respectively. Note that the 
same gains ൛݇௣, ݇ௗൟ are used for both controllers. Then, it 
can be verified that ߳௖ ൌ െ݇௣߳ െ ݇ௗ߳ሶ. From the 
interconnection shown in Fig. 03 and the definition of ݕଵሺݐሻ, 
we have ݑଶ ൌ ሺ߳ߤ ൅ ߳ሶሻ. Then, we have the state ݔଶ ൌ ߳, 
thus, the dynamics of the controller is given by: 

 

ଶߑ  ቊ
ሶଶݔ ൌ െݔߤଶ ൅ ଶݑ

ଶݕ ൌ ൫ܾ݇௣ െ ଶݔௗ൯ܾ݇ߤ ൅ ܾ݇ௗݑଶ
 (8) 

  
 Now, let us assume that ൫ܾ݇௣ െ ௗ൯ܾ݇ߤ ൌ ߛ ൐ 0. 
Consider the positive definite storage function ܪଶି௉஽ ൌ
ଵ

ଶ
 :ଶଶ. Then, using (8) it is possible to obtainݔߛ

 
ሶଶି௉஽ܪ  ൑ ଶݕଶݑ െ ܾ݇ௗݑଶ

ଶ  
 

therefore, we conclude that the controller dynamics (8) 
describes the ISP operator u₂→y₂. Thus, from Corollary 1 
we conclude that the feedback interconnection of Σ₁ and Σ₂ 
is L₂ finite gain stable, therefore, ݕଵ ∈  ଶ. Now, fromܮ
definition of y₁, it is possible to note that ߳ corresponds to 
the output of a strictly proper, exponentially stable transfer 
function, then, from Lemma 1 we conclude that ߳ሺݐሻ

௧→ஶ
ሱۛ ሮ0. 

 
 

B.  PID Controller Analysis 
 

    As in the previous case, let us consider the PID 

controllers: ݑሺݐሻ ൌ ݇௣݁ሺݐሻ െ ݇ௗݍሶ ሺݐሻ ൅ ݇௜ ׬ ݁݀߬
௧
଴  and 

ሻݐ௘ሺݑ ൌ ݇௣݁௘ሺݐሻ െ ݇ௗݍሶ௘ሺݐሻ ൅ ݇௜ ׬ ݁௘݀߬
௧
଴ , with the same 

definitions for all the signals involved. In this case we have 

߳௖ ൌ െ݇௣߳ െ ݇ௗ߳ሶ െ ݇௜ ׬ ߳݀߬
௧
଴ . As in the PD case, we have 

the controller input ݑଶ ൌ ሺ߳ߤ ൅ ߳ሶሻ, but now the state is 

ଶݔ ൌ ሺݔଶଵ, ଶଶሻ்ݔ ൌ ቀ׬ ߳݀߬,
௧
଴ ߳ቁ

்
. Therefore, with the same 

definition for γ in the PD case, the dynamics of the PID 
controller is given by: 

 

ଶߑ  ൝
ሶଶଵݔ ൌ ଶଶݔ

ሶଶଶݔ ൌ െݔߤଶଶ ൅ ଶݑ
ଶݕ ൌ ܾ݇௜ݔଶଵ ൅ ଶଶݔߛ ൅ ܾ݇ௗݑଶ

 (9) 

 
In this case we consider the storage function: 
 

ଶି௉ூ஽ܪ  ൌ
ఓ௕௞೔
ଶ
ଶଵଶݔ ൅ ܾ݇௜ݔଶଵݔଶଶ ൅

ఊ

ଶ
 ଶଶଶ (10)ݔ

 
which will be positive definite if the condition ݇௣ ൒
ሺ݇ߤௗ ൅ 2݇௜/ߤሻ holds. Now, the time derivative of (10) 
along the trajectories of (9) is: 

 
ሶଶି௉ூ஽ܪ  ൑ ଶݕଶݑ െ ܾ݇ௗݑଶ

ଶ   
 

thus we conclude that the system (9) defines the ISP 
mapping: u₂→y₂ and, following the same lines as in the PD 
case, it is possible to conclude that ߳ሺݐሻ

௧→ஶ
ሱۛ ሮ0. 

 
C.  Identification algorithm 
 
 By the structure presented above, there is some freedom 
for selecting the identification algorithm. One possibility is 
the gradient algorithm presented in [8]. To represent such 
algorithm in the form (7), let to define ݔଷ ൌ  ෨ and the inputߠ
u₃=y₁. Then, the identification algorithm dynamics is given 
by: 

 

ଷߑ  ൜
ሶଷݔ ൌ െݑ߶߁ଷ
ଷݕ ൌ െ߶ݔଷ

 (11) 

 
 In this case, we can consider the following storage 

function: ܪଷ ൌ
ଵ

ଶ
ଷݔ
்Γିଵݔଷ, whose time derivative along the 

trajectories of (11) is: ܪሶଷ ൌ ଷݔ
்Γିଵݔሶଷ ൌ ଷݑ

 ଷ, which showsݕ்
that the system (11) describes a passive operator: u₃→y₃. 
This property will let us interconnect this system with the 
system Σ₁ and, then, use the passivity properties of the 
feedback system using again the passivity invariance 
property stated in Proposition 2, as will be shown later. 
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D.  Stability Analysis 
 

 The interconnection presented in Fig. 03 is important 
because of the invariance of passivity property described in 
Proposition 2 and the feedback interconnection properties 
described in Theorem 1 and Corollary 1. Note that the 
system (5) can be obtained if we first make the feedback 
interconnection of Σ₁ and Σ₃. Then, this resulting system 
can be interconnected again in the same way with Σ₂. The 
first interconnection is passive according with Proposition 2, 
while the second interconnection is L₂-finite gain stable 
according with Corollary 1. Therefore, for the whole system 
we have that ݕଵ ∈  ሻ tendsݐଶ and it can be concluded that ߳ሺܮ
to zero as t tends to infinity, as mentioned before, using 
Lemma 1. However, there are other important features that 
we can analyze from the structure presented. For instance, 
the sum of all the storage functions can be considered as a 
Lyapunov function, although in this case we split the system 
into simpler subsystems, then,  it was straightforward to 
analyze them independently and get conclusions for the 
whole system in a simpler way. For example, for the PD 
case it is possible to consider the following positive definite 
Lyapunov function: ଵܸ ൌ ଵܪ ൅ ଶି௉஽ܪ ൅  ଷ, whose timeܪ
derivative along the trajectories of (6) can be upper bounded 
as: ሶܸଵ ൌ൑ െሺܽ െ ሻ߳ሶଶߤ െ  ,ଶ, which shows that V₁<0߳ߛߤ
then, it is easy to see that all the signals remain bounded and 
that ߳ሺݐሻ ∈  ଶ. Besides, if y₁≡0, then, we can conclude thatܮ
(6) is ZSO. Then, the system equilibrium is asymptotically 
stable. Thus q(t) and qe(t) are bounded. Also, ݑଵ ൌ
െሺݕଶ ൅ ଷሻݕ ∈ ஶ, then, from (6) we have that ߳ሷܮ ∈  ,ஶܮ
therefore, from Lemma 1 we conclude that ߳ሶ

௧→ஶ
ሱۛ ሮ 0.  A 

second important property is that the Euler-Lagrange 
structure is preserved. From this point of view, it is possible 
to consider the potential and kinetic energy of each 
subsystem for control design [3]. In this way, we can apply 
the Passivity Based Control (PBC) approach [1], [2], [3] in 
order to design a controller that modifies the open loop 
energy of the system in a desired way. For example, the 
potential energy can be modified for having a unique 
minimum at a desired point qd for regulation purposes or 
both, the potential and kinetic energy can be modified in 
order to accomplish trajectory tracking. This approach is a 
key feature presented in [3] that can be useful if we employ 
the passivity based approach. The last property to be 
considered is that related with the parameter convergence. 
From the stability analysis presented above, let us recall that 
 ሻ is an element of the regressor vector ϕሺtሻ. This isݐ௘ሺݑ
important because as mentioned in [5] and [10], the 
structure of the controller influences the parameter 
convergence. For example, we have that nonlinearities 
enhance parameter convergence and reduce the variance of 
parameter estimates in presence of disturbance signals. 
Therefore, one aspect to consider when designing the 
controller is which structure would improve the performance 
of the parameter identification algorithm. For example, in 

[10] the authors showed that the performance of the 
identification algorithm can be increased through the effect 
of the gains of the controllers and that a PID controller can 
lead to best estimates than those obtained using only a PD 
controller. On the other hand, if nonlinearities enhance 
parameter convergence, then it is possible to design a 
controller which fulfills the ISP condition presented above, 
but with some nonlinearity that benefit the parameter 
convergence; then, the next step that could be further 
investigated is which class of controllers can be used to 
improve the performance of the identification algorithm. As 
an example of the simplicity for the structure of subsystems 
presented above, consider the gradient algorithm used in 
[10] for parameter estimation. In this case the regressor 
vector is given by the following structure ߶ሺݐሻ ൌ ሺݍሶ௘,  ௘ሻ்ݑ
and a PD controller is considered. Then, by using the 
regressor vector ߶௥ሺݐሻ ≜ ሺ߶௥ଵ, ߶௥ଶሻ் ൌ ሺݍሶ , െݑሻ், then it 
can be shown that: 

 

 
ఃೝభ
ொ೏

ൌ
௕௞೛௦

௦మା௖௦ା௕௞೛
,
ఃೝమ
ொ೏

ൌ
ି௞೛௦ሺ௦ା௔ሻ

௦మା௖௦ା௕௞೛
  

 
where Φ௥ଵ ൌ ࣦሼϕ୰ଵሺtሻሽ, Φ௥ଶ ൌ ࣦሼϕ୰ଶሺtሻሽ and ܳௗ ൌ
ࣦሼݍௗሺݐሻሽ. Thus, from Theorem 2 it is possible to conclude 
that if the reference ݍௗ is PE, then ߶௥ሺݐሻ will be PE and, 
from the stability analysis presented above, it can be 
concluded that ߶ሺݐሻ converges to a vector that fulfills the 
PE conditions, then, ensuring that the parameter error vector 
 ሻ converges to zero. Besides, another important featureݐ෨ሺߠ
that we can remark here is the freedom for selecting any 
input signal that accomplish the PE condition (or the SR 
condition of Definition 6). Therefore, we can select both the 
controller and the excitation signal in order to find out a 
better class of identification algorithms whose performance 
rely not only on the excitation signal and the identification 
algorithm gains, but also in the controller structure and its 
gains. The same conclusions for the stability analysis and 
parameter convergence can be drawn for the PID case. 
Finally, it is clear that in practice not only nonlinearities can 
be a drawback for identification purposes, but also the 
perturbation signals. However, this could not be actually a 
significant problem if we consider the Theorem 10 
presented in [10] and stated as folows. 

 
Theorem 4. ([10]) Consider the perturbed system ߳ሷ ൌ െܿ߳ሶ െ
ܾ݇௣߳ ൅ ߶෨்ߠ ൅  a perturbation signal. If the ߥ with ,ߥ
equilibrium ݓ଴ of the unperturbed system is exponentially 
stable, then: (i) The perturbed system is small signal L∞ 
stable, that is, there exists γ∞ such that ‖ݓሺݐሻ‖ ൑ ߚஶߛ ൏ ݄, 
where ݓሺݐሻ is the solution of the perturbed system starting 
at ݓ଴. (ii) There exists m≥1 such that ‖ݓ଴‖ ൏ ݄/݉ implies 
that w(t) converges to a ball Ωδ of radius δ=γ∞β<h, that is: 
for all ε>0 there exists T≥0 such that ‖ݓሺݐሻ‖ ൑ ሺ1ߜ ൅  ሻߝ
for all t≥T, along the solutions of the perturbed system 
starting at ݓ଴. Also, for all t≥0, ‖ݓ଴‖ ൏ ݄. 
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    The importance of this result is that it let us conclude that 
the controller gains actually reduce the size of the region Ωδ, 
which gives robustness to the identification algorithm when 
there exist disturbances.  
 
 As a final step, the experimental result for closed-loop 
identification of a DC servomechanism is presented. The 
servomechanism employed for the experiments consists of a 
DC brushed Clifton Precision motor, model JDTH-2250-
BQ-IC, driven by a Copley Controls analog power 
servoamplifier, model 413, configured in current mode. An 
optical encoder gives angular position measurements. A 
MultiQ-3 card from Quanser Consulting performs data 
acquisition. The Matlab/Simulink software operating with 
the WINCON software from Quanser Consulting serves as 
programming platform. The sampling period for all the 
experiments was set to 1 ms. The MatLab/Simulink block 
Band Limited White Noise provides the signal excitation 
and its parameters were set to Noise Power = 0.005, seed 
[1212121] and Sampling time = 0.1 s. The parameters of the 
real servomechanism (nominal parameters), were computed 
using the technical data of the servomotor and the power 
amplifier. The nominal values are a = 0.2174 and b = 257.7. 
A PID controller was employed with gains ݇௣ ൌ 9, ݇ௗ ൌ
0.19 and ݇ସ ൌ 4. The update law gains were set to Γ ൌ
݀݅ܽ݃ሼ0.2,110ሽ and ߤ ൌ 10. Performance of the proposed 
approach was compared against a recursive discrete-time 
Least Squares algorithm with forgetting factor [6]. In this 
case, a relay closes the loop and the regression model was 
obtained in the same way as in [9] by filtering the 
servomechanism input and ouput. Fig 04 (a) shows the 
estimated parameter ොܽ for the proposed method and Fig. 04 
(b) the same parameter obtained with the LS algorithm, 
while Fig. 04 (c) shows the estimated parameter ෠ܾ for the 
proposed method and Fig. 04 (d) the same estimated 
parameter for the LS algorithm. From this figures it is 
possible to see that both identification algorithms give 
similar results, but the proposed method has a faster 
convergence time and gives estimates closer to the nominal 
parameters. 
 

V. CONCLUSION 

 
         In this paper a passive analysis for closed-loop 

identification of a DC servomechanism was presented. It 
was shown that the closed-loop system with the 
identification algorithm can be split into three subsystems, 
which are simpler to analyze and then, passivity and 
stability properties can be obtained for the whole system 
employing the analysis performed on each subsystem. The 
advantage of using the passivity based approach is that it let 
us visualize a possible complex system as a set of simpler 
interconnections and then, decide which structure is 
appropriate for identification purposes. Besides, it was 
shown that the controller structure is an important feature 
that has not been underlined and that could be useful not  

 
 

Fig. 04.  Identified parameters: (a) Estimate ොܽ for the proposed method; (b) 
estimate ොܽ for the LS algorithm; (c) identified parameter ෠ܾ for the proposed 
method; (d) identified parameter ෠ܾ for the LS algorithm. 
 
only for the performance of the controlled system, but also 
for ensuring the PE condition on the regressor vector and for 
enhancing parameter convergence.  
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