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Abstract— This paper adresses the effect that a controller
has on the parameter estimates for a closed-loop identification
methodology with a DC servomechanism. Closed-loop iden-
tification is performed with a direct method, where a PD
controller, which stabilizes the system without knowledge about
its parameters, closes the loop. It is shown that when the
perturbation signal is absent, exponential convergence can be
claimed, making the identification algorithm robust. However,
when there exists a perturbation signal it can be established
a region where the parameter estimates belong to, and it is
shown how this region is affected by the PD controller gains.

I. INTRODUCTION

Servomechanisms are fundamental in modern Robotic and
Mechatronic systems where high speed and high precision
are of prime importance. In most industrial controllers,
Proportional Integral Derivative (PID) algorithms are the
choice for closing the loop when the variable of interest is the
servomechanism position [3]. In order to apply model-based
tuning methods it is necessary to perform an identification
algorithm on the servomechanism. It is important to note
that if the variable of interest is servo position, then, a
linear model of a servomechanism contains a pole on the
imaginary axis, thus making the system not BIBO stable, i.e.,
a bounded input applied to the servomechanism would not
produce a bounded position. Therefore, for security reasons,
parameter identification should be performed in closed loop.
References [5], [6], [7], [8] propose methods for closed loop
identification of position-controlled servos where the loop
is closed using a linear controller. The approach proposed
in [8] uses a PD controller to close the loop and an on-
line gradient algorithm allows estimating a linear model of a
servomechanism. Relay-based techniques are widespread for
servo identification [9], [10]. The idea behind these methods
is to close the loop through a relay in order to obtain
a sustained oscillation. Then, its amplitude and frequency
allows identifying linear model and non linear models of a
servomechanism.

Nearly all of the identification procedures using a linear
controller [5], [6], [7] fall into the category of direct methods
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[11], i.e., the parameter identification procedure is applied
without regard about the controller being used to close
the loop. Moreover, most of the parameter identification
techniques use Least Squares methods, which would give
incorrect estimates if the disturbances affecting the servo
have not zero mean. On the other hand, the relay-based
methods give consistent results but tuning of the relay con-
troller can be cumbersome. Besides, no one of the reviewed
methods takes explicitly into account disturbances affecting
the servomechanism.

This work presents an identification methodology for a
perturbed position-controlled servomechanism. A PD con-
troller closes the loop and achieves stability without knowl-
edge about the servomechanism parameters. Theoretical re-
sults show that when the perturbation signal is identically
zero, exponential convergence can be claimed, and in the
presence of a bounded perturbation signal a region Ωδ can
be found where the estimated parameters belong to, which
can be made arbitrarily small if a high gain controller is
employed. Some simulations depict the behavior of such
a region, showing the effect that the controller has on the
estimated parameters. The paper is organized as follows.
Section II is devoted to present preliminary theoretical results
of parameter estimation and passivity based control. In
Section III a general description of the disturbed model to be
identified is presented. In Section IV the non perturbed case
for the identification algorithm is considered, making enpha-
sis in the exponential convergence of all the signals involved,
specially those correponding to the parameter convergence.
In Section V the perturbed case for closed-loop identification
is introduced. Finally, Section VI presents the analysis of the
results and Section VII gives some concluding remarks.

II. PRELIMINARY RESULTS

Through the presentation for the closed-loop parameter
identification analysis proposed in this paper, the following
results are worth presenting. All the Definitions, Lemmas
and Theorems are basically the results presented in [13], [4]
and [2] for system identification and passivation.

Let consider the linear time-varying system [C (t) , A (t)]
defined by

ẋ (t) = A (t)x (t) , y (t) = C (t)x (t) (1)
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where x (t) ∈ Rn, y (t) ∈ Rm, while A (t) ∈ Rn×n, C (t) ∈
Rm×n, are piecewise continuous functions.

Definition 1: (Uniform Complete Observability, UCO
[13]) The system [C,A] is called uniformly completely
observable (UCO) if there exist strictly positive con-
stants β1, β2, δ, such that, for all t0 ≥ 0: β1I ≤
N (t0, t0 + δ) ≤ β2I , where N (t0, t0 + δ) ∈ Rn×n is
the so-called observability Grammian: N (t0, t0 + δ) =∫ t0+δ
t0

ΦT (τ, t0)CT (τ)C (τ) Φ (τ, t0) dτ , with Φ (t, t0) be-
ing the state transition matrix.

Lemma 1: (UCO under output injection [13]) Assume
that, for all δ > 0, there exists kδ > 0 such that, for all
t0 ≥ 0:

∫ t0+δ
t0

‖K (τ)‖2 dτ ≤ kδ . Then, the system [C,A]
is UCO if and only if [C,A+KC] is UCO. Moreover, if
the observability Grammian of the system [C,A] satisfies
the UCO condition, then, the observability Grammian of the
system [C,A+KC] satisfies the inequalities with identical
δ and β′1 = β1/

(
1 +
√
kδβ2

)2
, β′2 = β2 exp (kδβ2).

Theorem 2: ([13]) Assume that f (t,x) : R+×Rn → Rn
has continuous and bounded first partial derivatives in x and
is piecewise continuous in t for all x ∈ Bh (a ball of radius
h centered at 0 in Rn), t ≥ 0. Then, the following statements
are equivalent

1) x = 0 is an exponentially stable equilibrium point of

ẋ = f (t,x) ,x (t0) = x0 (2)

2) There exists a funtion V (t,x) and some strictly pos-
itive constants h′, α1, α2, α3, α4, such that, for
all x ∈ Bh, t ≥ 0: (i) α1 ‖x‖2 ≤ V (t,x) ≤
α2 ‖x‖2, (ii) dV (t,x) /dt|(2) ≤ −α3 ‖x‖2 and (iii)
|∂V (t,x) /∂x| ≤ α4 ‖x‖

Theorem 3: ([13]) If there exists a function V (t,x) and
strictly positive constants α1, α2, α3 and δ, such that for all
x ∈ Bh, t ≥ 0 the contidions (i), (ii) and (iii) of Theorem 2
hold, then x (t) converges exponentially to zero.

Theorem 4: ([1]) The state-space equation [A, b, C, d] is a
minimal realization of a proper rational function ĝ (s) if and
only if (A, b) is controllable, (A,C) is observable or if and
only if dim (A) = deg (ĝ (s)), where ĝ (s) = N (s) /D (s)
and deg (ĝ (s)) = deg (D (s)).

In the next definitions, let consider the system Π
defined as Π : ẋ (t) = f (x, u) , x (0) = x0 ∈
Rn, y (t) = H (x, u), where x ∈ Rn is the state vec-
tor, u ∈ Rn the input and y ∈ Rm the system out-
put. Consider the set Ξ of n−dimensional real valued
functions f (t) : R+ → Rn and define the set L2 ,{
x ∈ Ξ : ‖f‖22 ,

∫∞
0
‖f (t)‖2 dt <∞

}
, with ‖·‖ the Eu-

clidean norm. This set constitutes a normed vector space with
the field R and norm ‖·‖2. Let introduce the extended space
L2e as L2e ,

{
x ∈ Ξ : ‖f‖22T ,

∫ T
0
‖f (t)‖2 dt <∞,∀T

}
,

where L2 ⊂ L2e. In the same way, let introduce the inner
product and the truncated inner product of functions u and y
as (u, y) ,

∫∞
0
u (t)T y (t) dt, (u, y)T ,

∫ T
0
u (t)T y (t) dt.

Definition 2: (Dissipativity, [2]) The system Π is dissipa-
tive with respect to the supply rate w (u, y) : Rm×Rm → R
if and only if there exists a storage function H : Rn → R≥0,

such that H (x (T )) ≤ H (x (0)) +
∫ T
0
w (u (t) , y (t)) dt for

all u (t), T ≥ 0 and all x0 ∈ Rn.
Definition 3: (Passivity, [2]) The system Π is passive if

its supply rate is given by ω (u, y) = uT y. It is input strictly
passive (ISP) if there exists a positive constant δi such that
the supply rate can be expressed as ω (u, y) = uT y−δi ‖u‖2,
δi > 0. Finally, it is output strictly passive (OSP) if there
exists a positive constant δ0 such that the supply rate can be
expressed as ω (u, y) = uT y − δ0 ‖u‖2, δ0 > 0.

Definition 4: (L2 stability, [2]) The system Π is called L2

finite gain stable if there exists a positive constant γ such
that for any initial condition x0 there exists a finite constant
β (x0) such that ‖y‖2T ≤ γ ‖u‖2T + β (x0).

Proposition 5: (OSP implies L2 stability, [2]) If Σ : u→
y is OSP, then it is L2 stable.

Definition 5: (Zero state Observability, [2]) A state space
system ẋ (t) = f (x), x ∈ Rn, is zero state observable
from the output y (t) = h (x) if for all initial conditions
x (0) ∈ Rn we have y (t) ≡ 0 =⇒ x (t) ≡ 0. It is zero state
detectable if y (t) ≡ 0 implies that lim x (t) = 0 as t→∞.

Definition 6: (Persistency of excitation, PE [13]) A vector
φ : R+ → R2n is persistently exciting (PE) if there exist
constants {α1, α2, δ} > 0 such that

α1I ≤
∫ t0+δ

t0

φ (τ)φT (τ) dτ ≤ α2I ∀t0 ≥ 0 (3)

Lemma 6: (PE trough a LTI filter, [13]) Let w : R+ →
R2n. If w is PE, the signals w, ẇ belongs to the space L∞,
and H is a rational stable strictly proper minimum phase
transfer function, then H (w) is PE.

Theorem 7: (Small Signal I/O Stability, [13]) Consider
the perturbed system ẋ = f (t,x, u), x (0) = x0 and the
unperturbed system ẋ = f (t,x, 0), x (0) = x0, where t ≥ 0,
x ∈ Rn and u ∈ Rm. Let x = 0 be an equilibrium point of
the unperturbed system. Let f be piecewise continuous in t
and have continuous and bounded first partial derivatives in
x for all t ≥ 0, x ∈ Bh, u ∈ Bc. Let f be Lipschitz in u,
with Lipschitz constant lu, for all t ≥ 0, x ∈ Bh, u ∈ Bc.
Let u ∈ L∞. If x = 0 is an exponentially stable equilibrium
point of the unperturbed system, then

1) The perturbed system is small-signal L∞ stable, i.e.,
there exist γ∞, c∞ > 0, such that ‖u‖∞ < c∞ implies
that

‖x‖∞ ≤ γ∞ ‖u‖∞ < h (4)

where x is the solution of f (t,x, u) starting at x0 = 0
and γ∞ is positive.

2) There exists m ≥ 1 such that, for all ‖x0‖ < h/m,<
‖u‖∞ < c∞ implies that x (t) converges to a ball Bδ
of radius δ = γ∞ ‖u‖∞ < h, i.e., for all bounded
ϕ > 0, there exists T ≥ 0 such that

‖x (t)‖ ≤ (1 + ϕ) δ (5)

for all t ≥ T , along the solutions of f (t,x, u) starting
at x0. Also for t ≥ 0, ‖x (t)‖ < h.
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III. GENERAL MODEL DESCRIPTION

This paper deals with closed-loop identification of a per-
turbed DC servomechanism whose mathematical description
is given by

Jq̈ (t) + f q̇ (t) = ku (t) + ν1 (t) = τ (t) + ν1 (t) (6)

where J , f , k, u, v1 and τ are the inertia, viscous friction
coefficient, amplifier gain, input voltage, perturbation signal
and torque input, respectively. Model (6) assumes that the
amplifier works in current mode. Note that model (6) can be
rewritten as

q̈ (t) = −aq̇ (t) + bu (t) + ν (t) (7)

where a = f/J , b = k/J are positive constants and ν =
ν1/J . It is assumed that the perturbation signal is bounded,
i.e., ‖v1 (t)‖ ≤ β, β ∈ R+. The next paragraphs will show
how, even in the presence of the perturbation signal ν (t), it
can be ensured that closed-loop identification of (7) leads to
a region Ωδ where the parameter estimates belong to, and
that such a region can be made arbitrarily small if a high
gain PD controller is employed for closing the loop.

IV. CLOSED-LOOP IDENTIFICATION ALGORITHM: NON
PERTURBED CASE

A. Stability analysis

In order to perform the closed-loop identification of (7),
it will be considered a similar procedure to that presented in
[8]. To this end, as a first step we consider the case when
there is not a perturbation signal, i.e., ν (t) ≡ 0, leading to
the unperturbed servo model q̈ (t) = −aq̇ (t) + bu (t).

The block diagram for the closed-loop identification pro-
cedure is depicted in Fig. 1. The method consists of closing
the loop of the servomechanism and its model by using a
PD controller, where the same gains are used for both PD
controllers. Then, the output error ε (t) , q (t) − qe (t) and
its time derivative are employed to feed an identification
algorithm which estimates the system parameters and updates

Fig. 1. Block diagram for the closed-identifcation algorithm.

them in the estimated model. All this procedure is now
theoretically summarized.

For closing the loop around the unperturbed system let us
consider the PD controller u (t) = kpe (t) − kdq̇ (t), with
e (t) = qd (t) − q (t) the tracking error signal, qd (t) the
reference signal and kp > 0, kd > 0 the proportional and
derivative controller gains. Then, the unperturbed system in
closed loop with u (t) leads to the closed-loop dynamics

Σ1 : q̈ (t) = − (a+ bkd) q̇ (t) + bkpe (t) (8)

It is not difficult to prove, by using the Routh Hurwitz
criterion, that the control law u (t) stabilizes the unperturbed
servo model. Now consider the unperturbed estimated model
q̈e (t) = −âq̇e (t) + b̂ue (t) and the PD controller ue (t) =
kpee (t) − kdq̇e (t), where ee (t) = qd (t) − qe (t) is the
tracking error for the unperturbed estimated model. Then,
the unperturbed estimated model in closed loop with ue (t)
leads to the closed-loop dynamics

Σ2 : q̈e (t) = −
(
â+ b̂kd

)
q̇e (t) + b̂kpee (t) (9)

Note that the same gains are used for both controllers u (t)
and ue (t). However, even when the real servomechanism
(8) is stable, the same conclusion cannot be drawn for its
model (9), because it has time varying coefficients, making
then necessary to analize its stability. From the definition of
ε (t), it is possible to evaluate its second time derivative and
employing (8) and (9), the error dynamics is stablished as
follows

ε̈ (t) + cε̇ (t) + bkpε (t) = θ̃Tφ (t) (10)

with c , (a+ bkd) > 0 and θ̃ (t), φ (t) being the parameter
error and the regressor vector respectively defined as θ̃ ,

θ̂ − θ =
(
â− a, b̂− b

)T
, φ (t) , (q̇e,−ue)T . In order to

analyze the behaviour of the signals involved in the error
dynamics (10), passivity based arguments [2] will be used.
To this end, let x = [ε, ε̇]T be the state vector and consider
the following storage function

H1 (x) =
1
2
xT
[
bkp µ
µ 1

]
x = xTMx

where µ ∈ R+. It is easy to show that H1 will be possitive
definite if µ <

√
bkp. Besides, after some straigthforward

steps it is possible to conclude that if µ <min{c/2, 2bkp/c},
then the time derivative of H1 along the trajectories of
(10) yields Ḣ1 (ε, ε̇) ≤ θ̃Tφ (µε+ ε̇) − c

2 (µε+ ε̇)2, i.e.,
(10) defines an OSP operator θ̃Tφ → (µε+ ε̇). More-
over, it is well known that the feedback interconection
of passive subsystems is passive, thus making intuitive to
consider the parameter error dynamics as follows: Σ3 :
·
θ̃ = −Γφ (µε+ ε̇), with Γ = ΓT a constant positive
definite matrix. Then, by considering the storage function
H2

(
θ̃
)

= θ̃TΓ−1θ̃/2 it is easy to conclude that Σ3 defines

a passive operator (µε+ ε̇) → −θ̃Tφ. Finally, let consider
the feedback interconection of (10) with Σ3 given by

Σ
{
ε̈ (t) + cε̇ (t) + bkpε (t) = θ̃Tφ (t) ,

·
θ̃ = −Γφ (µε+ ε̇)

(11)
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then, by considering the storage function for (11) as the sum
of H1 and H2, it is easy to prove that Σ is still OSP, thus,
according to Proposition 5, it follows that (µε+ ε̇) ∈ L2. Let
define y (t) = (µε+ ε̇) as the output for the interconnected
system (11). Then, note that ε (t) corresponds to the output
of an exponentially stable filter whose input belongs to the
L2 space, therefore ε (t)→ 0 as t→∞ [12].

Until now it has been proven that q (t) ∈ L∞ and that
ε (t)→ 0 as t→∞, therefore, qe (t)→ q (t) as t→∞, i.e.,
qe (t) ∈ L∞, therefore, the system (9) is stable, as desired. It
is left to prove that indeed θ̃ (t) → 0. To this end, consider
the state-space description of (10) as

ẋ = Ax +BU, y (t) = Cx (12)

with

A =
[

0 1
−bkp −c

]
, B =

[
0
1

]
, CT =

[
µ
1

]
, U = θ̃Tφ

where xT = (ε, ε̇) is the state vector. In order to prove
that θ̃ (t) converges to zero, it is enough to prove that the
regressor vector φ (t) is Persistently Exciting (PE) as pointed
out in [13]. Unfortunately, for this case the regressor vector
φ (t) has signals from the estimated model (9), which is a
time varying system. To overcome this technical difficulty
let consider the regresor vector φTr (t) = (q̇,−u)T wich
consists of signals from the real servomechanism (8). By
considering the same ideas as [13] it is not a difficult task
to show that if c > µ, then, φr (t) will be PE (see also [8]).
Now, let consider the difference φr − φ = (ε̇, kdε̇+ kpε)

T

and consider the Lyapunov function candidate V1 = H1+H2.
Clearly V1 > 0 if µ <

√
bkp and it is easy to show that V̇1 ≤

−βε2, β , 2
α

(
µbkpα/2− µ2c2/8

)
, with α , (c− µ) > 0.

Therefore, if µ ≤ 4bkpc/
(
4bkp + c2

)
then ε (t) ∈ L2, and

considering the fact that y (t) = (µε+ ε̇) ∈ L2 permits
concluding ε̇ (t) ∈ L2, which makes clear that (φr − φ) ∈
L2. Now, given a PE signal ω (t) and a signal z (t) ∈ L2,
the sum (ω + z) is still PE [13]. Thus, φ = φr − (φr − φ)
is PE as desired and the convergence of θ̃ (t) to zero can be
claimed, i.e., the estimated parameters do converge to the real
ones. Based on the above results, the following proposition
follows.

Proposition 8: Let the system (8) and assume that
µ <min

{√
bkp, c/2, 2bkp/c, 4bkpc/

(
4bkp + c2

)}
. Then{

ε, ε̇, θ̃
}
→ 0 as t→∞.

As we can see from the results presented above, it has
been proved the parameter convergence of the identification
algorithm. However, the convergence is asymptotic. Then, in
order to make the algorithm robust when there exist distur-
bances, it is important to ensure the exponential convergence
of all the system signals, which is the aim of the next section.

B. Exponential Convergence

When dealing with system identification, an important
issue is the robustness of the identification algorithm in
presence of external perturbations or unmodeled dynamics.
Thus, it is not enough to guarantee that the parameter error
approaches to zero, but also to ensure that the overall system

will be exponentially stable. Therefore, it is important to
show under which conditions the system (11) is indeed
exponentially stable.

Let consider the state space description given by (12), then
the system (A,B,C) is observable and controllable, i.e., it is
a minimal realization, if µ < c/2. Let consider the systems

Σ4 :

{ ·
θ̃ = 0

y2 = φT (t) θ̃ (t)
,Σ5 :

{ ·
θ̃ = −Γφ (µε+ ε̇)
y2 = φT (t) θ̃ (t)

(13)
The last analysis proved that φ (t) is PE, therefore Σ4 is

UCO and so do Σ5 (see Definition 1 and Lemma 1). Then,
the main result of this section can be stablished as follows.

Theorem 9: Let the system (12) and assume that µ satis-
fies the inequality given in Proposition 8. Let w̄ =

(
x̄, θ̃
)

be an equilibrium point of (12). Then w̄ is an exponentially
stable equilibrium point.

Proof: In order to prove exponential stability, Theorem
3 will be used. Let consider the Lyapunov function candi-
date V2 (w (t)) = H2

(
θ̃ (t)

)
+ H3 (x (t)), where w (t) =[

x (t) , θ̃ (t)
]T

=
[
ε, ε̇, θ̃

]T
and

H3 (x (t)) =
1
2
xTM2x,M2 =

[
bkp + µc µ

µ 1

]
(14)

with H2

(
θ̃ (t)

)
= θ̃TΓ−1θ̃/2. Function H3 > 0 if the

inequality µ <
(
c+

√
c2 + 4bkp

)
/2 holds. Besides, it is

possible to show that 1
2λmin (M2) ‖x‖2 + 1

2λmin (Γ)
∥∥∥θ̃∥∥∥2

≤

V2 (w) ≤ 1
2λmax (M2) ‖x‖2 + 1

2λmax (Γ)
∥∥∥θ̃∥∥∥2

. By taking
the time derivative of V2 along the trajectories of (11) and
defining the diagonal matrix Q =diag{µbkp, c− µ}, we get

V̇2 ≤ −xTQx ≤ 0 (15)

where Q = QT > 0 if µ < c. In order to prove exponential
stability it is then necessary to prove that there exist strictly
positive constants α3, δ such that∫ t+δ

t

d

dτ
V2 (w (τ))

∣∣∣∣
(12)

dτ ≤ −α3 ‖w (t)‖2 (16)

First note from (12) and (15) that∫ t+δ

t

d

dτ
V2 (w (τ))

∣∣∣∣∣
(12)

≤ −λmin (Q)
µ2 + 1

∫ t+δ

t

|y (τ)|2 dτ

then, (16) will be valid if for α3 > 0 the inequal-

ity λmin(Q)
µ2+1

∫ t0+δ
t0

|y (τ)|2 dτ ≥ α3

(
‖x (t0)‖2 +

∥∥∥θ̃ (t0)
∥∥∥2
)

holds for all t0 ≥ 0 and w (t0). Now consider the following
system

ẋ = Ax +BU,U = θ̃Tφ,
·
θ̃ = 0, y = Cx (17)

Let K = −Γ (µε+ ε̇) and consider the UCO property of
Σ5 with that K value. It is clear that the condition on K
from Lemma 1 holds with kδ =

∫ t0+δ
t0

ΓT (µε+ ε̇)2 Γdτ ≤
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∫ t0+δ
t0

λ2
max (Γ) (µε+ ε̇)2 dτ and from section IV we know

that (µε+ ε̇) ∈ L2, thus, there exists a positive con-
stant κ > 0 such that kδ ≤ κλ2

max (Γ). Note also that
y (t) = CT eA(t−t0)x (t0) +

∫ t
t0
CT eA(t−τ)Bφ (τ) dτ θ̃ (t0)

because from (17) the vector θ̃ is a constant. Let de-
fine z1 and z2 as z1 , CT eA(t−t0)x (t0), z2 ,∫ t
t0
CT eA(t−τ)Bφ (τ) dτ θ̃ (t0). From the stability analysis

of Section IV it was concluded that
{
φ (t) , φ̇ (t)

}
∈ L∞,

and that φ (t) is PE. Hence, from Lemma 6 it is clear that
φf (t) ,

∫ t
t0
CT eA(t−τ)Bφ (τ) dτ is PE, therefore, there

exist positive constants α1, α2, σ such that α1

∥∥∥θ̃ (t0)
∥∥∥2

≤∫ t1+σ
t1

z2
2 (τ) dτ ≤ α2

∥∥∥θ̃ (t0)
∥∥∥2

for all t1 ≥ t0 ≥ 0

and θ̃ (t0). Moreover, because A is Hurwitz stable there
exist positive constants γ1, γ2 such that

∫∞
t0+mσ

z2
1 (τ) dτ ≤

γ1 ‖x (t0)‖2 e−γ2mσ for all t0 ≥ 0, x (t0) and an integer
m > 0 to be defined later. Since (A,C) is observable, then,
there exists γ3 (mσ) > 0 with γ3 (mσ) increasing such that∫ t0+mσ
t0

z2
1 (τ) dτ ≥ γ3 (mσ) ‖x (t0)‖2 for all t0 ≥ 0, x (t0)

and m > 0. Let n > 0 be another integer to be defined later
and δ = (m+ n)σ. From the triangle inequality∫ t0+δ

t0
|y (τ)|2 dτ ≥ ‖x (t0)‖2 [γ3 (mσ)− γ1e

−γ2mσ]

+
∥∥∥θ̃ (t0)

∥∥∥2

(nα1 −mα2)

Let both m and n be such that γ3 (mσ) − γ1e
−γ2mσ ≥

γ3(mσ)
2 > 0 and nα1 − mα2 ≥ α1 > 0, then,∫ t0+δ

t0
|y (τ)|2 dτ ≥ γ3(mσ)

2 ‖x (t0)‖2 + α1

∥∥∥θ̃ (t0)
∥∥∥2

. Sim-
ilarly we have that∫ t0+δ

t0
|y (τ)|2 dτ ≤ 2γ1 ‖x (t0)‖2 e−γ2mσ

+2 (m+ n)α2

∥∥∥θ̃ (t0)
∥∥∥2

Let define β1 , min
(
α1,

γ3(mσ)
2

)
, β2 ,

max (2γ1, 2 (m+ n)α2), then, it is possible to obtain

β1

(
‖x (t0)‖2 +

∥∥∥θ̃ (t0)
∥∥∥2
)
≤
∫ t0+δ
t0

‖y (τ)‖2 dτ

≤ β2

(
‖x (t0)‖2 +

∥∥∥θ̃ (t0)
∥∥∥2
) (18)

therefore ∫ t+δ
t

d
dτ V2 (w (τ))

∣∣∣
(12)
≤

−λmin(Q)
µ2+1 β1

(
‖x (t0)‖2 +

∥∥∥θ̃ (t0)
∥∥∥2
)
≤ −α3 ‖w0‖

(19)

where α1 = 1
2min(λmin (M2) , λmin (Γ)),

α2 = 1
2max(λmax (M2) , λmax (Γ)) and α3 =

λmin(Q)
µ2+1 min

(
α1,

γ3(mσ)
2

)
> 0. Then, the system (11)

is exponentially stable.
Now it has been proved the exponential stability for

the system (11) in the non perturbed case. However, in
practical applications it is well known that there will be
some disturbances that will appear, such as unmodelled
dynamics or noise from the enviroment or the measuring

devices, which makes neccessary to extend the analysis to
the perturbed case, as described in the next Section.

V. CLOSED-LOOP IDENTIFICATION ALGORITHM:
PERTURBED CASE

The last section proved that the unperturbed system (11)
is exponentially stable. Now, it will be proved that such a
system obtained with the perturbed system (7) in closed loop
with the PD controller u (t) is L∞ stable. Let consider the
system (7) in closed loop with u (t), the system Σ2 and the
output error ε (t) defined as before. Then, it is possible to
obtain the following error dynamics

ε̈ (t) = −cε̇ (t)− bkpε (t) + θ̃Tφ (t) + ν (t) (20)

It is important to know if the perturbed system (20) is still
stable in presence of the perturbation signal ν (t). If it is the
case, then the system will be robust even in the presence
of perturbations, wich is desirable in identification context
because reliable parameter estimates can be obtained even in
the perturbed case. The next result obtained from [13] allow
us conclude that the perturbed system (20) is L∞ stable.

Theorem 10: Consider the perturbed system (20) and the
unperturbed system (10). If the equilibrium w0 of (10) is
exponentially stable, then: (i) The perturbed system (20) is
small signal L∞-stable, that is, there exists γ∞ such that
‖w (t)‖ ≤ γ∞β < h, where w (t) is the solution of (20)
starting at w0; (ii) There exists m ≥ 1 such that ‖w0‖ <
h/m implies that w (t) converges to a ball Ωδ of radius
δ = γ∞β < h, that is: for all ε > 0 there exists T ≥ 0 such
that ‖w (t)‖ ≤ δ (1 + ε) for all t ≥ T , along the solutions
of (20) starting at w0. Also for all t ≥ 0, ‖w0‖ < h.

Proof: Consider again the Lyapunov function
V2 (w (t)). Assuming that inequalities of µ from Proposition
8 hold, it is posible to obtain V̇2 ≤ −λmin (Q) ‖w‖2 +
β
√
µ2 + 1 ‖w‖. Let define the constants ᾱ3 , λmin (Q),

α4 ,
√
µ2 + 1, γ∞ , α4

√
(α2/α1)/ᾱ3, δ , γ∞β,

m ,
√
α2/α1 ≥ 1, then, the time derivative of V2 along

the trajectories of (20) yields V̇2 ≤ −ᾱ3 ‖w‖ (‖w‖ − δ/m)
and two cases will be considered: (1) First we have to prove
(i) of Theorem 10. To this end consider the case where
‖w0‖ ≤ δ/m. Note that δ/m ≤ δ because of m ≥ 1,
which implies that w (t) ∈ Ωδ for all t ≥ 0. Suppose that
it is not true, then, by continuity of the solutions there exist
T0 and T1, with T1 > T0 ≥ 0 such that ‖w (T0)‖ = δ/m,
‖w (T1)‖ > δ and for all t ∈ [T0, T1] we have that ‖w (t)‖ ≥
δ/m, then, from the bound V̇2 ≤ −ᾱ3 ‖w‖ (‖w‖ − δ/m)
it is clear that in [T0, T1] we get V̇2 ≤ 0, but in this case:
V2 (T0,w (T0)) ≤ α2 (δ/m)2 = α1δ

2 and V2 (T1,w (T1)) >
α1δ

2, which is a contradiction, therefore, for all w (t) with
initial condition w0, a solution for (20) remains on Ωδ .
(2) Second, assume that ‖w0‖ > δ/m and that for all
ε > 0 there exist T ≥ 0 such that ‖w (t)‖ ≤ δ (1 + ε) /m
and suppose that it is not true; then, for some ε > 0
and for all t ≥ 0 we have that ‖w (t)‖ > δ (1 + ε) /m
and from V̇2 ≤ −ᾱ3 ‖w‖ (‖w‖ − δ/m) we obtain V̇2 ≤
−α3ε (1 + ε) (δ/m)2 which is a strictly negative constant.
However, this contradicts the fact that:
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V2 (0,w0) ≤ α2 ‖w0‖2 < α2h
2/m2 and V2 (t,w (t)) ≥ 0

for all t ≥ 0, because the inequality must be strict.
On the other hand, let assume that for all t ≥ T the

inequality ‖w (t)‖ ≤ δ (1 + ε) holds, then, we can prove this
afirmation in the same way that the first step of this proof.
Thus, we conclude that w (t) converges to Ωδ , as desired,
and the proof is completed.

VI. ANALYSIS OF THE RESULTS

Note that from the stability proof of the perturbed
system (20) we get the bound γ∞β = ((µ2 +
1)max(λmax(M2), λmax (Γ)))1/2β/((λmin(Q))2min(λmin(M2),
λmin(Γ)))1/2. Then, the eigenvalues for M2 are given by
s =

(
bkp + µc+ 1±

√
(bkp + µc− 1)2 + 4µ2

)
/2, so that

λmin (M2) = (bkp + µc + 1−
√

(bkp + µc− 1)2 + 4µ2)/2,

λmax (M2) = (bkp + µc+ 1 +
√

(bkp + µc− 1)2 + 4µ2)/2,
λmin (Q) =min{µbkp, c− µ} , λmax (Q) =max{µbkp, c− µ}.
In order to show the qualitative behavior of the region Ωδ
it is possible to get graphical results for different values of
λmin (Q), λmin (Γ), λmax (Q), λmax (Γ), kp, kd and µ. Fig. 2
show the behaviour of region Ωδ for different values of kp
and kd and Fig. 3 show the same but for different values
of λmin (Γ) and λmax (Γ). From the last equations and those
figures it is possible to note that: (a) The region Ωδ can
be made arbitrarily small if the values for λmin (Q) and
min(λmin (M2) , λmin (Γ)) are as large as posible. (b) The
value for λmin (Q) can be increased if the controller gains kd
and kp have large values, which is the case if we use a high
gain PD controller. (c) By increasing the value of kp and
kd we increase the value of λmin (M2). (d) By increasing
the values of the gain matrix Γ we increase the value of
λmin (Γ). (e) As it can be seen from Figures 2 and 3, the
effect of the gain kp is more important in order to reduce
the size of the region Ωδ , while the effect of the gain kd
does not have a significative effect. The effect of the gain kd
is almost imperceptible if the gain kp is large enough. (f) If
the values of the maximum or minimum eigenvalues for the
gain matrix Γ dominate, the size of Ωδ will be even smaller
than that obtained in other circumstances. Therefore, for
robustness of the identification algorithm, it is important
not only the values of the controller gains, but also the
value of the elements of the gain matrix Γ employed for
the parameter update law. Region Ωd is effectively reduced
if a high gain kp is employed, and also if Γ has large
eigenvalues.

Fig. 2. Behavior of the region Ωδ when the value of kp and kd
are varied.

Fig. 3. Behavior of the region Ωδ when the value of λmin(Γ) and
λmax(Γ) are varied.

VII. CONCLUSION

This paper exposes a method for on-line identification
of the parameters of a linear model of a servomechanism
working in closed loop with a PD controller. An advantage
of this configuration is that it allows freely choosing the
excitation signal. Theoretical results show that when there is
not perturbation signals the system is exponentially stable,
while in the perturbed case the system is sill stable, making it
robust in face of perturbation signals. Finally, it was shown
that by increasing the controller and adaptation gains the
region Ωd, obtained in the perturbed case, can be arbitrarily
reduced, which means that the accuracy of the parameter
estimates can be increased, which gives some insight about
the importance of the controller structure in the identification
process.
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