
Dr. Roger Miranda 
Colorado

Instituto
Politécnico

Nacional-CITEDI

Introduction



Introduction 

• Fully autonomous scale vehicle
1:10.

• Developed for getting started
with the study and control of
autonomous cars.

• Is part of the Intelligent Systems
and Robotics group of Professor
Dr. Raúl Rojas at Freie Universität
Berlin.

• A complete guide for
understanding the Autominy car
can be found in:
https://autominy.github.io/Auto
Miny/docs/quick-start-guide/

The autominy car is:



Introduction 

• MadeInGermany1

The prototype cars are:

• Electric car E-Instein2

1. https://autonomos.inf.fu-berlin.de/vehicles/made-in-germany/
2. https://autonomos.inf.fu-berlin.de/vehicles/e-instein/



Introduction 

• The base hardware in the car
processes all the algorithms
on a Intel NUC CPU.

• Also, we have the basic
configuation to run the car
autonomously.

• The camera allows the car to
seek the track ahead, process
images, and execute tasks
such as localization, lane
detection, obstacle
detection, etc.

For the Autominy car:

1. https://autominy.github.io/AutoMiny/docs/quick-start-guide/



Introduction 
The Autominy has two main processing modules:

1. One controller board
with microprocessor. It
has the arduino controller
and an additional IMU
MPU6050. The main tasks
are:
 Battery voltage checker
 Chassis sensor data

acquisition
 Voltage distribution
 Control of chassis

https://autominy.github.io/AutoMiny/docs/autominy-core/



Introduction 
The Autominy has two main processing modules:

https://autominy.github.io/AutoMiny/docs/autominy-core/

2. Intel NUC Computer. Is
the Autominy’s main
processor and:
 Handles the data

coming from the
controller board,
LIDAR, Bosch USB
IMU, and the stereo
camera.



• NVIDIA Jetson Nano1

• NVIDIA Jetson Xavier1

Introduction 
The Autominy can be upgraded with:

These boards allow
for:
• Using ANN and

reinforcement
learning.

• The board sends
the data to the
NUC through an
ethernet
connection.

1. https://www.nvidia.com/es-la/autonomous-machines/embedded-systems/jetson-nano/



General specifications of the Autominy car with a fully charged LiPo
battery are:

Introduction 

Name Value
Dimensions 387.5mm x 160 mm x 270 

mm
Power consumption (core, Nano, 
Xavier)

80 W, 85 W, 90 W

Max. power consumption (core, 
Nano, Xavier)

112 W, 122 W, 142 W

Max. forward velocity 2.5 m/s
Max. backwards velocity -2.5 m/s



The Autominy also has:
Sensor modules: publish raw data from sensors (steering angle,

encoder ticks, stereo camera, IMU).
Virtual sensors: process raw sensor data (lidarpose estimation,

camera pose estimation, obstacle detection, odometry, road marking
localization, kalman filter hardware calibration, pointcloud, fake
GPS).
Autonomics modules: run in the background and can take over

control if the car is in danger.

Introduction 



To power the car:
Use a 14.8 V (4 cells with

3.8 V each) LiPo battery.
Voltage on each cell must

be always above 3.2 V.
The car turns off if the

battery voltage drops below
12.8 V.

Introduction 

https://www.indiamart.com/proddetail/lipo-battery-for-flower-dropping-drone-
camera-23338091130.html



The car has a emergency stop module that monitors obstacles present in the driving
direction. Then, it can stop the car if crash is imminent. This module uses the LiDAR and
intercepts the actuator’s communication. Its configuration can be done through:
 $ rqt dynamic reconfigure

Introduction 

Name Default value Description
angle_front 0.7 Car’s front angle to monitor
angle_back 0.7 Car’s back angle to monitor
break_distance 0.45 Constant brake distance
break_distance_based_on_speed False Calculate brake distance based on speed
reverse_minimum_distance 0.28 Minimum distance of obstacles to be considered while reverse 

driving.
forward_minimum_distance 0.07 Minimum distance of obstacles to be considered while forward 

driving.
negative_acceleration 4.0 Acceleration used in speed-based braking

Table 1. Emergency stop configuration.



The rqt dynamic reconfigure tool can be visualized as depicted in the following figure.

Introduction 



For simulation purposes, the Autominy package uses the Gazebo tool. It creates a physical
model of the car. To use this simulator, we employ the command:
 $ roslaunch autominy Simulated.launch

Introduction 



It is essential to emphasize that:
• ROS is a software framework/middleware for robot applications.
• It can be programmed by using:

– C++, Python, LISP
• Package management (over 3000 packages available)
• Publisher/subscriber approach, services, and actions.
• Big community developed and documented by thousands of contributors.
• There are many libraries and tools free to be used (motion planning, object

recognition, hardware interfaces, plotting data, 3D visualization, among
others).

Introduction 



ROS can be used for:
• Academic research: https://robots.ros.org/
• Industrial applications: https://rosindustrial.org/
• Autonomous cars: https://www.ros.org/news/robots/autonomous-cars/
• NASA: https://www.ros.org/news/2014/09/ros-running-on-iss.html

Introduction 



ROS allows for:
• Easier hardware abstraction and code reuse.
• Tasks can be divided in different parts that communicate with each other through

messages.
• Each part is named “node” and is typically run as a separate process.
• Nodes perform a specific computation and share data with the network.
• Nodes can be added or removed while ROS is running.
• ROS can run on different machines (distributed system).

Introduction 



The ROS architectureROS is as follows:
• There is a master node, which can be run by

utilizing:
– $ roscore

• The master node:
– Tracks publishers/subscribers
– Enables peer-to-peer connections between

nodes.
• A robot control system usually comprises many

nodes.
• Topics are named buses over which nodes

exchange messages.
• A message is a simple data structure comprising

typed fields.

Introduction 

rosout

Parameter 
server

Master A

Node 1
Node 2



Introduction
We assume that we are running:
Ubuntu 18.04
ROS Melodic

We can follow the installation guide of Ubuntu through the next address:
https://ubuntu.com/tutorials/install-ubuntu-desktop#1-overview

Also, we can follow the installation guide of ROS through the next address:
https://wiki.ros.org/melodic/Installation/Ubuntu

After finishing the previous tutorial, we are able to install the Autominy packages.



Introduction
To install the Autominy packages, we follow the next steps:
1. $ git clone https://github.com/autominy/autominy
2. $ cd autominy/catkin ws
3. $ apt install python-catkin-tools
4. $ rosdep install --from-paths . --ignore-src --rosdistro=melodic –y
5. $ catkin build
6. $ source devel/setup.bash



Introduction
After finishing the previous steps, we have installed all the Autominy packages. Watch the following video.



Researchgate: 
https://www.researchgate.net/profile/Roger-Miranda-
Colorado-2
Google Scholar: 
https://scholar.google.com/citations?hl=es&user=Nmzkr
SwAAAAJ&view_op=list_works&sortby=pubdate
Pure-IPN: 
https://ipn.elsevierpure.com/es/persons/roger-miranda-
colorado-3
Youtube: 
https://www.youtube.com/channel/UCeGT1lfNnJt695XG
zEI4IxA

Dr. Roger Miranda Colorado


